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Photochemical behaviour of 5-formyl and 5-acetyl uracils
in the presence of ethene
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Abstract

Atypically for uracils, 5-formyl and 5-acetyl uracils react photochemically with excess ethene to produce non-acylated cyclobutane
adducts whose formation can be explained by a novel, tandem [2+2] cycloaddition/Norrish-I a-cleavage process.
� 2008 Elsevier Ltd. All rights reserved.
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We recently showed that a [2+2] photocycloaddition
reaction between ethene and substituted uracils 1 served
as a general route for the preparation of cyclobutane
b-amino acids 3, after appropriate transformation of the
initially-formed photoadducts 2 (Scheme 1).1 The photo-
cycloaddition reaction was successful for a variety of 5-
(and some 6-) substituted uracils, but curiously 5-formyl
and 5-acetyl uracils (5-Fo-U and 5-Ac-U, respectively)
did not furnish the expected adducts 2.

5-Acyl uracils are of particular biological importance.
Some are constituents of therapeutically promising mole-
cular structures,2 and others have been incorporated into
RNA sequences, which serve as high-affinity ligands for
specific protein targets.3 More significantly, 5-Fo-U is
formed from thymine when DNA is oxidatively damaged,
and this transformation frequently provokes replication
miscoding, leading to diverse pathologies.4 Indeed, some
biological repair mechanisms specifically target 5-Fo-U.5

Furthermore, ultraviolet sunlight induces various types of
DNA damage, including thymine–thymine photodimer
formation.6 In the above context, the photochemical reac-
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tivity of 5-formyl (and other 5-acyl) uracils appears worthy
of investigation; we therefore decided to examine further
the behaviour of 5-Fo-U and 5-Ac-U in the conditions used
in Scheme 1.

Irradiation of an acetone–H2O solution of 5-Fo-U (4) at
rt for 3 h followed by standard work-up1a,7 produced a
clean product mixture, which consisted of roughly equal
amounts of two inseparable cyclobutane adducts: the
known1b unsubstituted compound 6 and its previously
unknown ethyl derivative 7 (Scheme 2). The structure of
the latter was deduced from its NMR spectral data within
the product mixture, and confirmed by comparison with an
authentic sample, prepared in 94% yield from 5-ethyl uracil
according to the general procedure.7,8 None of the antici-
pated formyl cyclobutane 5 was detected. Under the same
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conditions, 5-Ac-U (8) gave a clean product mixture
comprised of 7 as the major component, traces of 6, and
a small amount of the acetyl cyclobutane adduct 9.

The unexpected formation of compounds 6 and 7 can be
explained by the following tandem photochemical process
(Scheme 3): the [2+2] photocycloaddition of the uracil with
ethene proceeds rapidly to give the acyl cyclobutane (5 or 9),
which evolves via Norrish-I a-cleavage, giving radical 10.
Reaction of this species with a second molecule of ethene
gives ethyl radical 11, which picks up a hydrogen atom from
a nearby donor to provide 7. The photodecarbonylation of
aldehydes with direct return of hydrogen from the formyl
radical after a-cleavage is a known process,9 and probably
contributes to the significant formation of 6 from 4.

An important feature of this proposed sequence is the
transient formation of the anticipated [2+2] adduct. Since
this intermediate was detected in the case of 5-Ac-U (8),
the reaction was repeated to follow the evolution of all four
components in the mixture. The course of the reaction was
followed by the removal of small samples, which were
analysed by 1H NMR spectroscopy. Results are shown in
Figure 1. Upon irradiation, the concentration of substrate
8 dropped rapidly as the [2+2] photocycloaddition reaction
progressed, giving an efficient build-up of 9, which reached
a maximum after about 20 min. Thereafter, the proportion
of 9 dropped off continuously as 7 appeared and accumu-
lated steadily, becoming the main component at the end
of the 3 h period. The amount of 6 present was low at all
times, and only became detectable towards the end of the
reaction time. The kinetics profile is consistent with the
sequence of events proposed in Scheme 3.

These observations suggested that it should be possible
to obtain acetyl cyclobutane 9 in high yield if the reaction
mixture was irradiated for only 20 min. Indeed, this turned
out to be the case: 9 was thus obtained in 84% yield after
simple purification by column chromatography.10
In conclusion, this short study reveals the atypical tan-
dem photochemical reactivity of 5-acyl uracils in the pres-
ence of ethene. Although we found no evidence for uracil
photodimer formation in the present reactions, Norrish-I
processes may yet turn out to have some significance in
the evolution of photooxidatively damaged DNA in which
5-Fo-U has been formed from thymine.
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